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Abstract 

A methodology based on the concept of variable string length GA 

(VGA) is developed for determining automatically the number of hyper- 

planes for modeling the class boundaries in GA-classifier. The genetic 

operators and fitness function are newly defined to take care of the vari- 

ability in chromosome length. It is proved that the said method is able 

to arrive at the optimal number of misclassifications after sufficiently large 

number of iterations, and will need minimal number of hyperplanes for this 

purpose. Experimental results on different artificial and real life data sets 

demonstrate that the classifier, using the concept of variable length chromo- 

some, can automatically evolve an appropriate value of H, and also provide 

performance better than those of the fixed length version. Its comparison 
with another approach using VGA is provided. 

Keywords :   Genetic algorithms, optimum hyperplane fitting, speech recogni- 
tion, variable string length. 



1    Introduction 

Genetic Algorithms (GAs) (Goldberg, 1989) are randomized search and opti- 

mization techniques guided by the principles of evolution and natural genetics. 

They are efficient, adaptive and robust search processes, producing near op- 

timal solutions and have a large amount of implicit parallelism. Application 

of GA to various pattern recognition problems is described in (Pal and Wang, 

1996; Gelsema, 1995). One such application for designing a classifier is pro- 

vided in (Bandyopadhyay et. al., 1995) where the searching capability of GA 

is exploited for the placement of a number of hyperplanes, say H, for approxi- 

mating the decision boundaries. The method involves encoding the parameters 

of the hyperplanes in binary strings called chromosomes, in the feature space 

that yields minimum misclassification. It was demonstrated in (Bandyopad- 

hyay et. al, 1995) that the GA based classifier, subsequently referred to as the 

GA-classifier, can be well applied to a variety of data sets having both non- 

overlapping, non-convex, and overlapping classes. Its recognition scores were 

found to be comparable to, sometimes better than, those of k-NN rule (for differ- 

ent values of k), Bayes maximum likelihood classifier and multilayer perceptron 
based classifier. 

Note that estimation of a proper value of H is crucial for a good performance 

of the algorithm. Since this is difficult to achieve, one may frequently use a 

conservative value of H while designing the classifier. This first of all leads 

to the problem of an overdependence of the algorithm on the training data, 

especially for small sample size. In other words, since a large number of hyper- 

planes can readily and closely fit the classes, this may provide good performance 

during training but poor generalization capability. Secondly, a large value of 

H unnecessarily increases the computational effort, and may lead to the pres- 

ence of redundant hyperplanes in the final decision boundary. (A hyperplane is 

termed redundant if its removal has no effect on the classification capability of 
the GA-classifier.) 

In order to overcome these limitations a method has been described here to auto- 

matically evolve the value of if as a parameter of the problem. For this purpose, 



the concept of variable length strings in GA has been adopted. Unlike the con- 

ventional GA, here the length of a string is not fixed. Crossover and mutation 

operators are accordingly defined. A factor has been incorporated into the fit- 

ness function that rewards a string with smaller number of misclassified samples 

as well as smaller number of hyperplanes. Let the classifier so designed utilizing 

the concept of variable string lengths be called VGA-classifier. Issues of min- 

imum misclassification error and minimum number of required hyperplanes are 

theoretically analyzed under limiting conditions. 

One may note the difference between the proposed classification method and the 

one described in (Srikanth et al., 1995), also using the similar concept of variable 

length strings. In the latter method, the decision boundary was modeled by 

a variable number of ellipsoids which have a higher degree of complexity than 

hyperplanes. The fitness function of the string was determined from the number 

of misclassified samples only. Thus there was no incentive for reducing the 

number of ellipsoids although a factor favouring more compact, ellipsoids was 

introduced. 

The experimental results on speech data, Iris data and two artificially generated 

data sets show that the proposed classifier is able to reduce the number of hyper- 

planes significantly while retaining the classification performance of the previous 

fixed length GA-classifier. A comparison with the classifier implemented using 

the operators of Srikanth et al. (1995) is also provided. 

2    Genetic Algorithm with Variable String 

Length and the Classification Criteria 

The concept of variable string lengths in genetic algorithms has been used earlier 

in (Smith 1980) to encode sets of fixed length rules. Messy genetic algorithm 

(Goldberg et al., 1989) also uses the concept of variable string lengths for con- 

structing the chromosomes which may be under or over specified. Use of GA 

with variable string length has been made in (Harp and Samad, 1992) for encod- 

ing variable number of fixed length blocks in order to construct layers of a neural 



network, and in (Maniezzo, 1994) for the genetic evolution of the topology and 

weight distribution of neural networks. 

As mentioned in Section 1, the G'A-classifier (Bandyopadhyay et al., 1995) 

with fixed H, and consequently fixed string length is rigid, and therefore has 

several limitations like overfitting of the training data and presence of redundant 

hyperplanes in the decision boundary when a conservative value of H is used. 

To overcome these limitations, the use of variable length strings representing 

variable number of hyperplanes for modeling optimally the decision boundary 

therefore seems natural and appropriate. This would eliminate the need for fix- 

ing the value of H, evolving it adaptively instead; thereby providing an optimal 

value of H. 

It is to be noted that in the process, if we aim at reducing the number of mis- 

classified points only, as was the case for fixed length strings, then the algorithm 

may try to fit as many hyperplanes as possible for this purpose. This, in turn, 

would obviously be harmful with respect to the generalization capability of the 

classifier. Thus the fitness function should be defined in such a way, maximiza- 

tion of which ensures primarily the minimization of the number of misclassified 

samples and also the requisite number of hyperplanes. 

While incorporating the concept of variable string lengths, one may note that 

it is necessary to either modify the existing genetic operators or introduce new 

ones. In order to utilize the existing operators as much as possible, a new 

representation scheme involving the consideration of the ternary alphabet set 

{0, 1, # }, where # represents the don't care position, is used. For applying the 

conventional crossover operator, the two strings, which may now be of unequal 

lengths, can be made of equal length by appropriately padding one of them 

with #s. However, some extra processing steps have to be defined in order 

to tackle the presence of #s in the strings. Similarly, the mutation operator 

needs to be suitably modified such that it has sufficient flexibility to change the 

string length while retaining the flavour of the conventional operator. (As will 

be evident in the next section, the genetic operators are defined in such a way 

that the inclusion of # in the strings does not affect their binary characteristics 

for encoding and decoding purposes.) The classifier thus formed using variable 



string length GA (or VGA) is referred to as the VGA-classifier. 

Therefore the objective of the VGA-classifier is to place an appropriate number 

of hyperplanes in the feature space such that it, first of all, minimizes the number 

of misclassified samples and then attempts to reduce the number of hyperplancs. 

Using variable length strings enables one to check automatically and efficiently, 

various decision boundaries consisting of different number of hyperplanes in 

order to attain the said criterion. The description of such a classifier is given in 

the next section. 

3    Description of VGA-classifier 

As evident from the previous section, although the sequence of the different 

operations for GA (as shown in Fig. 1) is applicable to VGA too, the operators 

themselves are newly defined for VGA. They are described here. 

3.1     Chromosome Representation and Population Initial- 
ization 

The chromosomes are represented by strings of 1, 0 and # (don't care), encoding 

the parameters of variable number of hyperplanes. In 7^, N parameters are 

required for representing one hyperplane. These are N — 1 angle variables, 

angle\,..., anglel
N_x, indicating the orientation of hyperplane i (i = 1,2,..., H 

when H hyperplanes are encoded in the chromosome), and one perpendicular 

distance variable, pl indicating its perpendicular distance from the origin. Let 

Hmax represent the maximum number of hyperplanes that may be required to 

model the decision boundary of a given data set. It is specified a priori. Let 

the angle and perpendicular distance variables be represented by b\ and b% bits 

respectively. Then lH, the number of bits required to represent a hyperplane 

and Zmai, the maximum length that a string can have are 

l„   =   (JV-l)*&i+&2 (1) 

''max     ==     tlrnax * '■H \&) 



respectively. 

Let string i represent H hyperplanes. Then its length Zj is 

li=Hi* lH. 

Initial population is created in such a way that the first and the second strings 

encode the parameters of Hmax and 1 hyperplanes respectively to ensure suf- 

ficient diversity in the population. For the remaining strings, the number of 

hyperplanes, Hi, is generated randomly in the range [1, Hmax], and the k bits 

are initialized randomly to Is and Os. 

3.2    Fitness Computation 

As mentioned in Section 2, the fitness function (which is maximized) is defined 

in such a way that 

i : a string with smaller value of misclassifications is considered to be fitter 

than a string with a larger value, irrespective of the number of hyperplanes 

i.e., it first of all minimizes the number of misclassified points, and then 

ii : among two strings providing the same number of misclassifications, the 

one with the smaller number of hyperplanes is considered to be fitter. 

The number of misclassified points for a string i encoding Hi hyperplanes is 

found as follows : Let the Hi hyperplanes provide Mi distinct regions which 

contain at least one training data point. (Note that although Mi < 2Hi, in reality 

it is upper bounded by the size of the training data set.) For each such region 

and from the training data points that lie in this region, the class of the majority 

is determined, and the region is considered to represent (or be labeled by) the 

said class. Points of other classes that lie in this region are considered to be 

misclassified. The sum of the misclassifications for all the Mj regions constitutes 

the total misclassification missi associated with the string. Accordingly, the 

fitness of string i may be defined as 

fiti =   (n - missi) - aH{   1 < Hi < Hmax (3) 

= 0, otherwise, (4) 

6 



where n = size of the training data set and a = r^—. 

Let us now explain how the first criterion is satisfied: Let two strings i and j 

have number of misclassifications missi and missj respectively, and number of 

hyperplanes encoded in them be H{ and Hj respectively. Let misst < missj 

and Hi > Hj. (Note that since the number of misclassified points can only be 
integers, missj > missi + 1.) Then, 

fiti   = (n - mis Si) — aHi, 

fitj   = (n - missj) — aHj. 

The aim now is to prove that fiti > fitj, or that fiti - fitj > 0. From the 
above equations, 

fiti - fitj = missj - missi - <*(#; - Hj). 

If Hj = 0, then fitj = 0 (from Eq. 4) and therefore fitt > fitj. When 1 < 

Hj < Hmax, we have «(#< - Hj) < 1 since (Hi - Hj) < Hmax. Obviously, 

missj - missi > 1. Therefore fiti - fitj > 0, or, fiti > fitj. 

The second criterion is also fulfilled since fit{ < fitj when missi = miss, and 
Hi > Hj. 

3.3    Genetic Operators 

Among the operations of selection, crossover and mutation, the selection oper- 

ation used here may be one of those used in conventional GA, while crossover 

and mutation need to be newly defined for VGA. These are now described in 
detail. 

Crossover : Two strings, i and j, having lengths k and lj respectively are 

selected from the mating pool. Let k < lj. Then string i is padded with #s 

so as to make the two lengths equal. Conventional crossover like single point 

crossover, two point crossover (Goldberg, 1989) is now performed over these two 

strings with probability /ic. The following two cases may now arise : 



• All the hyperplanes in the offspring are complete. (A hyperplane in a 

string is called complete if all the bits corresponding to it are either defined 

(i.e., Os and Is) or #s. Otherwise it is incomplete.) 

• Some hyperplanes are incomplete. 

In the second case let u = number of defined bits (either 0 or 1) and t = total 

number of bits per hyperplane = (N -l)*b1 + b2 (from Eq. 1). Then, for each 

incomplete hyperplane, all the #s are set to defined bits (either 0 or 1 randomly) 

with probability j. In case this is not permitted, all the defined bits are set to #. 

Thus each hyperplane in the string becomes complete. Subsequently, the string 

is rearranged so that all the #s are pushed to the end, or in other words all 

the hyperplanes are transposed to the beginning of the strings. The information 

about the number of hyperplanes in the strings is updated accordingly. 

Mutation : In order to introduce greater flexibility in the method, the mutation 

operator is defined in such a way that it can both increase and decrease the 

string length. For this, the strings are padded with #s such that the resultant 

length becomes equal to lmax. Now for each defined bit position, it is determined 

whether conventional mutation (Goldberg, 1989) can be applied or not with 

probability /zm. Otherwise, the position is set to # with probability /xmi. Each 

undefined position is set to a defined bit (randomly chosen) according to another 

mutation probability (j,m.2. These are described in Fig. 2. 

Note that mutation may result in some incomplete hyperplanes, and these are 

handled in a manner, as done for crossover operation. For example, the oper- 

ation on the defined bits, i.e., when k < Z4 in Fig. 2, may result in a decrease 

in the string length, while the operation on #s, i.e., when k > U in the figure, 

may result in an increase in the string length. Also, mutation may yield strings 

having all #s indicating that no hyperplanes are encoded in it. Consequently, 

this string will have fitness = 0 and will be automatically eliminated during 

selection. 

Note that the operations defined here for designing the VGA-classifier are 

different from those used in (Smith 1980; Goldberg et al., 1989; Harp and Samad, 

1992; Maniezzo 1994, Srikanth et al., 1995). * 

8 



As in conventional GAs, the operations of selection, crossover and mutation are 

performed here over a number of generations till a user specified termination 

condition is attained. Elitism is incorporated such that the best string seen 

upto the current generations is preserved in the population. The best string of 

the last generation, thus obtained, along with its associated labeling of regions 

provides the classification boundary of the n training samples. After the design 

is complete, the task of the classifier is to check, for an unknown pattern, the 

region in which it lies, and to put the label accordingly. 

4    Issues of Minimum miss and H 

In this section we prove that the above mentioned VGA-classifier will provide 

the minimal misclassification error during training, for infinitely large number 

of iterations. At the same time it will require minimum number of hyperplanes 
in doing so. 

For proving this we use the result of (Bhandari et al., 1996), where it has been 

established that for an infinitely large number of iterations, an elitist model of 

GA will surely provide the optimal string. In order to prove this convergence 

they assumed that the probability of going from any string to the optimal one 

is always greater than zero, and the probability of going from a population 

containing the optimal string to one not containing the optimal one is zero. 

Since the mutation operation and elitism of the proposed VGA ensure that both 

these conditions are met, the result of (Bhandari et al., 1996), regarding the 

convergence to the optimal string is valid for VGA as well. 

Let us now consider the fitness function for string i (Eq. 3). Maximization of 

the fitness function means minimization of 

missi + aHi = err^   say 

where a = j^-. Let us call this the error function (erri). 



Let for any size of the training data set (n), the minimum value of the error 

function as obtained by the VGA-classifier be 

errmin = miss° + aH° 

after it has been executed for infinitely large number of iterations. Then accord- 

ing to Bhandari et al. (1996), this corresponds to the optimal string. Therefore 

we may write 

miss0 + aH° < miss + aH,      V miss, H. (5) 

Theorem 1 : For any value of H, 1 < H < Hmax, the minimal number of 

misclassified points is miss°. 

Proof : The proof is trivial and follows from the definition of the fitness 

function (Eq. 3) and the fact that miss° + aH° < miss + aH, V miss, H 

(Eq. 5). 

Theorem 2 : H° is the minimal number of hyperplanes required for providing 

miss° number of misclassified points. 

Proof : Let the converse be true, i.e., there exists some H', H' < H°, that 

provides miss" number of misclassified points. In that case, the corresponding 

fitness value would be miss0 + aH''. Note that now miss° + aH° > miss°+aH'. 

This violates Eq. 5. Hence H' ft H°, and therefore H° is the minimal number 

of hyperplanes required for providing miss0 misclassified points. Jf» 

From Theorems 1 and 2, it is proved that for any value of n, the VGA-classifier 

provides the minimum number of misclassified points for infinitely large number 

of iterations, and it requires minimum number of hyperplanes in doing so. 

5     Implementation and Results 

The experimental investigation presented in this section has two parts. In the 

first part, the effectiveness of VGA in automatically determining the value of H 

of the classifier is demonstrated for two sets of artificial data, a speech data and 

Iris data. The recognition scores of the VGA -classifier are also compared with 

10 



those of the fixed length GA-classifier. Secondly, we compare our concept of 

using variable string lengths in GA with another similar approach (Srikanth et 

al., 1995). For this purpose we have implemented their different operators in 

our classification algorithm for the above mentioned four data sets. 

The 2-dimensional artificial data sets, ADS 1 (Fig. 3) and ADS 2 (Fig. 4), 

consist of 557 and 417 points respectively belonging to two classes. The real life 

speech data, Vowel (Pal and Majumdar, 1977), consists of 871 samples having 

three feature values (corresponding to the three formant frequencies) and six 

classes {8, a, i,u, e, o}. Fig. 5 shows the overlapping class structures in the first 

and second formant frequency plane. Iris data comprises 150 samples having 

four features and three classes with 50 points in each class. 

A fixed population size of 20 is chosen. Roulette wheel strategy (Goldberg, 

1989) is used to implement proportional selection. As in an earlier investigation 

(Bandyopadhyay et al., 1995), single point crossover is applied with a fixed 

crossover probability of 0.8. A variable value of mutation probability \xm is 

selected from the range [0.01, 0.333]. Initially it assumes a high value, gradually 

decreasing at first, and then increasing again in the later stages of the algorithm. 

200 iterations are performed with each mutation probability value. The values of 

/xm, and nm2 mentioned in Section 3.3 are set to 0.1. The process is executed for a 

maximum 3000 iterations. Elitism is incorporated by replacing the worst string 

of the present generation by the best string seen upto the previous generation. 

Performance of the VGA-classifier 

Tables 1 and 2 show the number of hyperplanes HVGA as determined automati- 

cally by the VGA-classifier for modeling the class boundaries of the aforesaid 

four data sets when the classifier is trained with 10% and 50% samples respec- 

tively. Two different values of Hmax are used for this purpose viz., Hmax = 6 and 

Hmax = 10. The overall recognition scores obtained during testing of the VGA- 

classifier along with their comparison with those obtained for the fixed length 

version (i.e., GA-classifier) with H = 6 and 10 are also shown. (Note that 

H = 6 had been found to provide, on an average, good recognition scores in ear- 

lier experiments (Bandyopadhyay et al., 1995) with these data sets.) The scores 
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provided are the average values obtained over 5 different runs of the algorithms. 

Table 1: HVGA and the comparative overall recognition scores (%) during testing 

(when 10% of the data set is used for training and the remaining 90% for testing) 

Data set VGA-classifier 

Hmax = 10 

Score for 

GA-classifier 

#=10 

VGA- classifier 

■H-max = 0 

Score for 

GA-classifier 

H = 6 HvGA Score HvGA Score 
ADS 1 3 95.62 84.26 4 96.21 93.22 
ADS 2 6 88.16 84.04 5 88.35 88.29 
Vowel 6 73.66 69.21 6 71.19 71.99 
Iris 2 95.56 76.29 2 95.81 93.33 

Table 2: HVGA and the comparative overall recognition scores (%) during testing 

(when 50% of the data set is used for training and the remaining 50% for testing) 

Data set VGA-classifier 

Hmax = 10 

Score for 

GA-classifier 

tf = 10 

VGA-classifier 

■H-max == O 

Score for 

GA-classifier 

H = 6 HVGA Score HVGA Score 
ADS 1 4 96.41 95.92 4 96.83 96.05 
ADS 2 5 95.22 94.56 3 96.26 96.17 
Vowel 6 78.26 77.77 6 77.11 76.68 
Iris 2 97.60 93.33 2 97.67 97.33 

The results demonstrate that in all the cases, the VGA-classifier is able to 

evolve an appropriate value of HVGA from H^. In addition, its recognition 

score on the test data set is found, on an average, to be higher than that of the 

GA-classifier. There is only one exception to this for the Vowel data when 10% 

of the samples is used for training (Table 2). In this case, Hmax = 6 does not 

appear to be a high enough value for modeling the decision boundaries of Vowel 

classes with VGA-classifier. This is reflected in both the tables, where the 

scores for VGA-classifier with Hmax = 6 are less than those with Hmax = 10. 

12 



In all the cases where the number of hyperplanes for modeling the class bound- 

aries is less than 6, the scores of VGA-classifier with Hmax = 6 are found to be 

superior to those with Hmax = 10. This is so because with Hmax = 10, the search 

space is larger as compared to that for H^ = 6, which makes it difficult for the 

classifier to arrive at the optimum arrangement quickly or within the maximum 

number of iterations considered here. (Note that it may have been possible to 

further improve the scores and also reduce the number of hyperplanes, if more 
iterations of VGA were executed.) 

In general, the scores of the GA-classifier (fixed length version) with H = 10 

are seen to be lower than those with H = 6 because of two reasons; overfitting of 

the training data and difficulty of searching a larger space. The only exception 

is with Vowel for training with 50% data where the score for H = 10 is larger 

than that for H = 6. This is expected, in view of the overlapping classes of 

the data set and the significantly large size of the training data. One must note 

in this context that the detrimental effect of overfitting on the generalization 

performance increases with decrease in the size of the training data. 

As an illustration, the decision boundary obtained by the VGA-classifier for 

ADS 1 when 10% of the data set is chosen for training is shown in Fig. 3. 

Comparison with the Method in (Srikanth et al, 1995) 

In this section an investigation is made to compare the performance of our con- 

cept of using variable string length in GA with that of another similar approach 

(Srikanth et al., 1995). For this purpose the operators used in (Srikanth et al., 

1995) are implemented here for the same problem of pattern classification using 

hyperplanes, and the resulting performance is compared to those of our VGA- 

classifier for the four data sets. Before providing the results, let us describe in 

brief the method of incorporating variable string lengths in GAs as proposed in 
(Srikanth et al., 1995). 

The initial population is created randomly such that each string encodes the 

parameters of only one hyperplane. The fitness of a string is characterized by just 

the number of training points it classifies correctly, irrespective of the number 

of hyperplanes encoded in it. Among the genetic operators, traditional selection 

13 



and mutation are used. A new form of crossover, called modulo crossover is 

used which keeps the sum of the lengths of the two chromosomes constant both 

before and after crossover. 

Two other operators are used in conjunction with the modulo crossover for the 

purpose of faster recombination and juxtaposition. These are the insertion and 

deletion operators. During insertion, a portion of the genetic material from one 

chromosome is inserted at a random insert-location in the other chromosome. 

Conversely, during deletion, a portion of a chromosome is deleted to result in a 
shorter chromosome. 

Tables 3 and 4 show the comparative overall recognition scores during both 

training and testing of the VGA-classifier for the above mentioned four data 

sets when our approach of incorporating variable string length is compared with 

that adopted in (Srikanth et al., 1995) for 10% and 50% training data respec- 

tively. Other parameters are kept the same as before. Results shown are the 

average values taken over five different runs. For keeping parity, the VGA of 

Srikanth et al. is implemented such that no more than 10 hyperplanes are used 

for modeling the decision boundary of the data sets. The table also shows the 

number of hyperplanes, HVGA, generated by the two methods for one particular 

run. Since the VGA of Srikanth et al. does not take care of the minimization 

of the number of hyperplanes while maximizing the fitness function, the HVGA 

is usually higher than that of our method. 

As is evident from the tables, the performance of the classifier during training 

is better for the VGA of (Srikanth et al.) than the proposed one for all the 

data sets. The former, in general, uses more hyperplanes (of which many were 

found to be redundant on investigation), which results in an increase in the 

execution time. From the training performance, it appears that the operators 

used by Srikanth et al., are better able to recombine the subsolution blocks into 

larger blocks. However this is seen, in general, to result in comparatively poorer 

scores during testing. To consider a typical example in one of the cases for the 

Vowel data set when 10% data is used for training, 10 hyperplanes were used 

to provide a training recognition score of 97.47%, while the recognition score 

during testing fell to 68.95%. 
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It is also found that with increase in the size of the training data, the number 

of hyperplanes for modeling the class boundaries increase for the algorithm of 

Srikanth et al. Furthermore, as expected, the performance of all the classifiers 

is improved with increase in the size of the training data from 10% to 50%. 

Table 3: Comparative classification performance of VGA-classifier for Hmax=10 

using two types of variable string lengths (when 10% of the data set is used for 

training and the remaining 90% for testing) 

Data set Proposed VGA VGA (Srikanth et al.) 

Training 

score (%) 

Test 

score (%) 
HvGA Training 

score (%) 

Test 

score (%) 
HvGA 

ADS 1 100 95.62 3 100 93.16 6 

ADS 2 92.68 88.16 6 99.10 90.50 6 

Vowel 80.00 73.66 6 97.36 70.22 9 

Iris 100 95.56 2 100 94.98 2 

Table 4: Comparative classification performance of VGA-classifier for Hmax=10 

using two types of variable string lengths (when 50% of the data set is used for 

training and the remaining 50% for testing) 

Data set Pro )osed VGA VGA (Srikanth et al.) 

Training 

score (%) 

Test 

score (%) 
HvGA Training 

score (%) 

Test 

score (%) 
HvGA 

ADS 1 98.18 96.41 4 100.00 96.01 9 

ADS 2 97.21 95.22 5 100.00 94.85 7 

Vowel 79.73 78.26 6 85.48 78.37 9 
Iris 100 97.60 2 100.00 94.67 5 

6    Conclusions 

The problem of fixing the appropriate value of üf a priori of the GA-classifier 
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(Bandyopadhyay et al., 1995) has been resolved by using the concept of variable 

string lengths in genetic algorithm. New genetic operators are defined to deal 

with the concept of variable string lengths for formulating the classifier. The fit- 

ness function has been defined so that its maximization indicates minimization 

of the number of misclassified samples as well as the required number of hyper- 

planes. It is proved that for infinitely large number of iterations the method 

is able to arrive at the optimal number of misclassified samples and will need 

optimal number of hyperplanes for this purpose. 

Experimental evidence for different percentages of training and test data indi- 

cates that given a value of Hmax, the algorithm can not only be able to auto- 

matically evolve an appropriate value of H for a given data set, but also result 

in improved performance of the classifier. The method of using variable string 

length in the algorithm of Srikanth et al. is also implemented in our VGA- 

classifier for comparison. Since the former method does not include a factor 

for reducing the number of surfaces, it is found to use more hyperplanes for 

constituting the decision boundary. This results in better training performance, 

mostly at the cost of reduced generalization capability. Additionally, the execu- 

tion time is also more since no explicit effort is made to decrease the number of 
hyperplanes. 

In this connection one may also note that the genetic operators and processing 

steps of the VGA described in this article entail very little disruption of those 

in the conventional GA. On the other hand this is not true for the method of 

Srikanth et al. which introduces two new processing steps viz., insertion and 

deletion, besides using a significantly different crossover operator. Further, the 

former method requires the specification of H^, whereas such a constraint is 
not required for the latter one. 
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Figure Captions 

Fig. 1 - Basic steps in GA. 

Fig. 2 - Mutation operation for string i. 

Fig. 3 - ADS 1 along with VGA boundary for Hmax = 10 when 10% of the data 
set is used for training. 

Fig. 4 - ADS 2. 

Fig. 5 - Vowel Data in the Fx - F2 plane. 
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End 

Begin 

Begin 

t=0 

initialize population P(t) 

compute fitness P(t) 

repeat 

t = t+1 

select P(t) from P(t-l) 

crossover P(t) 

mutate P(t) 

compute fitness P(t) 

until termination criterion is achieved 

Figure 1: Basic steps in GA 

k = length of string i 

Pad string i with # so that its length becomes lmax 

for k = 1 to lmax do 

Generate rnd, rndl and rnd2 randomly in [0,1] 

if k < k do /* defined bits */ 

if rnd < fj,m do /* Conventional mutation */ 

flip bit k of string i 

else /* try changing to # */ 

if rndl < fitni do 

Set bit k of string i to # 

endif 

endif 

else /*.k>li i.e., # */ 

if rnd2 < ^m2 do /* Set to defined */ 

Position k of string i set to 0 or 1 randomly 
endif 

endif 

endfor 

End 

Figure 2: Mutation operation for string i 
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